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i PEM Fuel Cell

Fuel Source - Reformulated Coal Derived Fuels:
Methanol, Natural Gas, or Gasoline.
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i Preferential Oxidation (PROX)

= Objective

= Reduce CO from 1% to < 10 ppm to eliminate
CO poisoning of the anode in proton exchange
membrane (PEM) fuel cells.

= Reactions
CO + 1.0, — CO,
H, + 120, == H,O
(CO, + H, «— CO + H,0)

= Requirements
=« High CO Conversion (99.9%)
= High CO Selectivity
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i Metal Foam Monoliths

= High thermal
conductivity

= Reticulated structures,
high surface area

= Lateral (radial) mixing

= Low density, high
strength structure




i Effects Studied

1. Catalyst Composition
« 5% Pt; Varying Fe Loading*
(Washcoat loading ~ 1.6 g/in3)
« Support Structure

11. Operating Variables
« Inlet Temperature  Space Velocity
- Inlet CO Concentration . Linear Velocity
- Inlet O, Concentration

* Straschil, H. K.; Egbert, W., Jr., Canadian Patent 828058 (11/25/69).
Korotkikh, O.; Farrauto, R., Catalysis Today, 62 (2000), 249-254.
Liu, X.; Korotkikh, O.; Farrauto, R., Applied Catalysis A: General, 226 (2002) 293-303.



i Experimental Reactor
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i Range of Test Conditions

= Catalyst Length: 2 — 6 in.

= Pressure: 2 atm (abs.)

= Space Velocity: 5,000 - 60,000 hr!

= CO Inlet Concentration: 0.1% - 1.0%
s O,/CO ratio: 0.25-1.0

= Inlet Temperature: 80°C - 170°C

= Inlet Gas Composition:
H, CO, H,O CO o, N,
42% 9% 12% X% Y%  Balance



i Fe Loading on Ceramic Monolith
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Support Comparison
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rWGS Reaction

No CO in Feed, Varying O, in Feed

CO Formed by the r'WGS reaction
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i Effect of Space Velocity
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i Effect of Linear Velocity
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Potential Transport Effects in PROX
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i Effect of Space Velocity

Tin=80°C, CO=1% inlet conc., 0:/C0O =035
400 cpsi ceramic monolith
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i Effect of Linear & Space Velocity
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i Temperature Profiles in Catalyst
T
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i Conclusions

= 'WGS reaction can limit CO conversion.
= Need low T (or catalyst with no r'WGS activity)
= Need to avoid transport influence

= External heat/mass transport can be important.

= Support must have:
= High external surface area/volume
« High heat/mass transfer coefficients

= Straight-channel monoliths may not be best.
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i Process Design

Went

.

et Test Meter

Heate d line

: 3, i Tl
: Sand Bath
CiafMz2 W@N F =] > _T—l =)
: T, P
COM; :M{DL@EM—‘ it DU

PC

T
=
3
3
o
rF
T
iz
L’
=
=
=
T
1
1
1
1
st e

& HPLE l
' Pump
N M@L@w—
2: Went
| : =
-------- e i i A mAmEAE e mamamE=Ea==a== e R
& Inside Walk — in Hood, in #303 Outside
Station YWalk — in Hood
i, #303

21



i PEM Fuel Cell
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Foams with Tubes




i Catalyst Preparation

1. Dip the catalyst support in a slurry containing Al,Os.
Blow off excess slurry with compressed air. Dry the
washcoated support at 100°C and dip again as necessary.

>. Calcine at 500°C to insure washcoat adhesion.

3. Determine the pore volume of the washcoat by
impregnating the support with deionized water.

4. Impregnate the washcoated support with a Pt solution.
5. Dry at 100°C, then calcine at 500°C

6. Impregnate the supported catalyst with a Fe solution.
7. Dry at 100°C, then calcine at 500°C
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